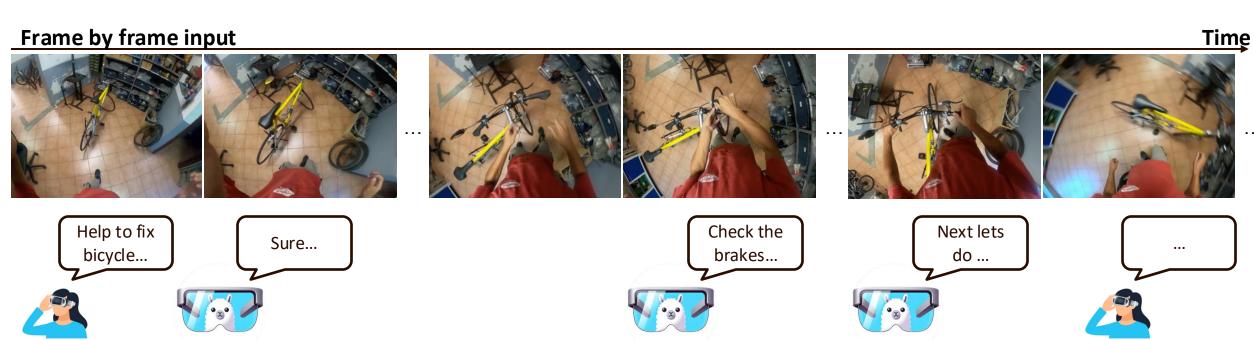
VideoLLM-online: Online Video Large Language Model for Streaming Video

陈卓 (Joya)

PhD Candidate @ Show Lab, National University of Singapore

Idea in Meta Ego-Exo4D Data Collection: Assume we have an AI assistant on the glasses like J.A.R.V.I.S...



Popular LMMs work in an interleaved mode, not optimal for streaming input

Popular LMMs work in an interleaved mode, not optimal for streaming input

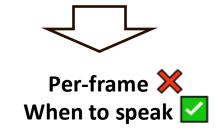
Why not optimal:

- 1. Not active: Rely on user query input rather than actively assist
- 2. Not long-term: Dense per-frame response costs too many tokens
- 3. Not real-time: Per-frame language generation is slow

Popular LMMs work in an interleaved mode, not optimal for streaming input

Why not optimal:

- 1. Not active: Rely on user query input rather than actively assist
- 2. Not long-term: Dense per-frame response costs too many tokens
- 3. Not real-time: Per-frame language generation is slow



Demo (audio supported by ChatTTS)

VideoLLM-online: Online Video Large Language Model for Streaming Video (CVPR 2024)

Joya Chen, Zhaoyang Lv, Shiwei Wu, Kevin Qinghong Lin, Chenan Song, Difei Gao, Jia-Wei Liu, Ziteng Gao, Dongxing Mao, Mike Zheng Shou ShowLab, National University of Singapore Reality Labs Research, Meta

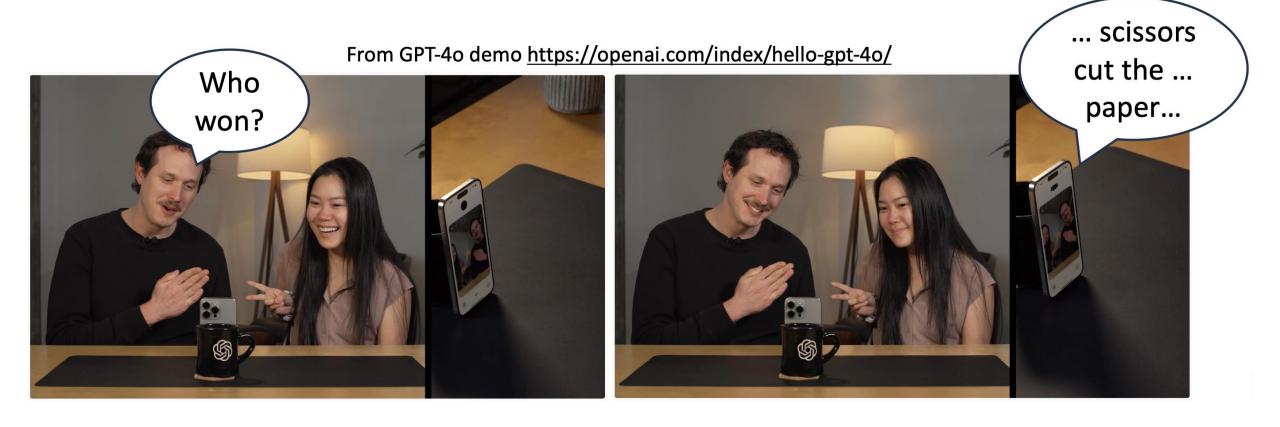
注意: 1. 视频中的音频采用了ChatTTS用于展示。其他方面为端到端的视频流大语言模型能力。

2. 视频中的暂停是为了等待较慢的语音播放速度,模型的推理速度可接近实时(5~10 FPS on RTX 3090 GPU, 10~15 FPS on A100 GPU)

Video Time = 0.0s, Average Processing FPS = 3.3, GPU: RTX 3090

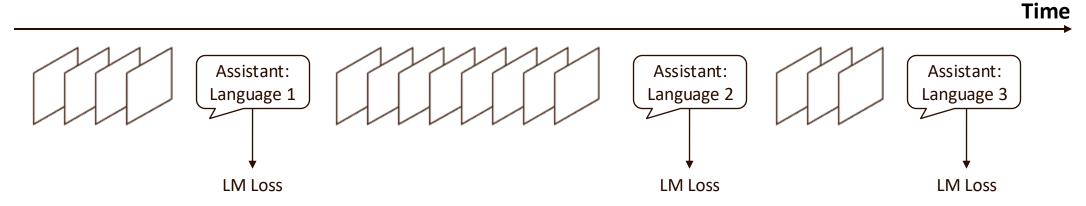
Streaming in GPT-4o?

GPT-40 also needs active audio input to assist vision problems

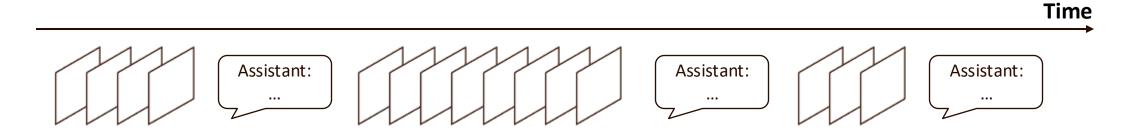


Review interleaved vision-language modeling (Ignore user query for simplicity)

1. Training

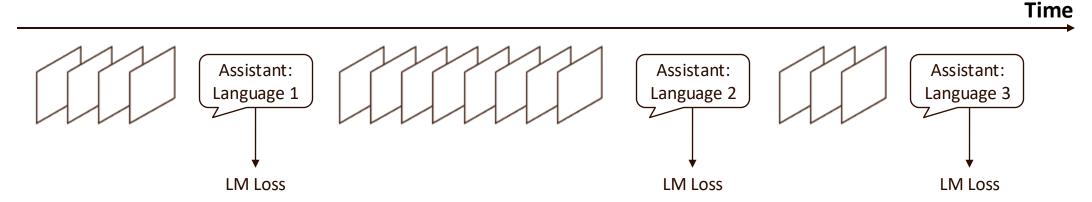


2. Inference

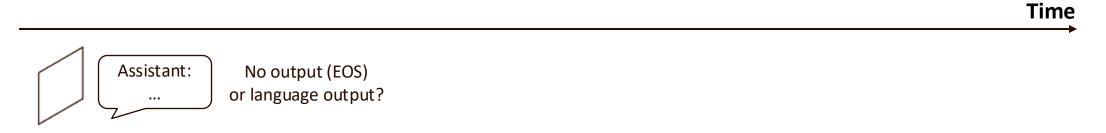


Interleaved vision-language modeling for streaming input? (Ignore user query for simplicity)

1. Training

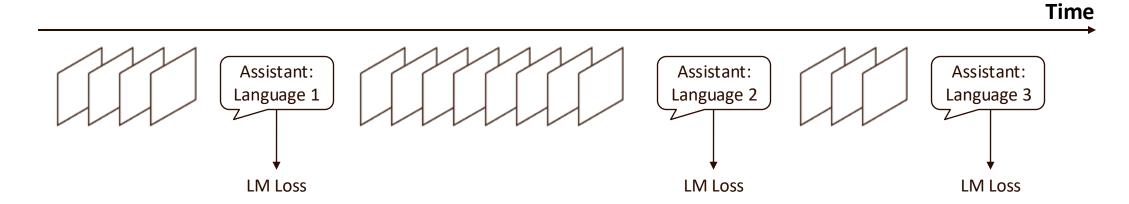


2. Streaming Inference

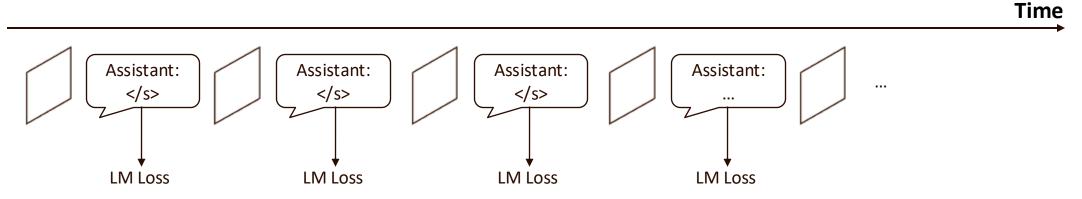


The naïve streaming vision-language modeling as multi-turn conversation

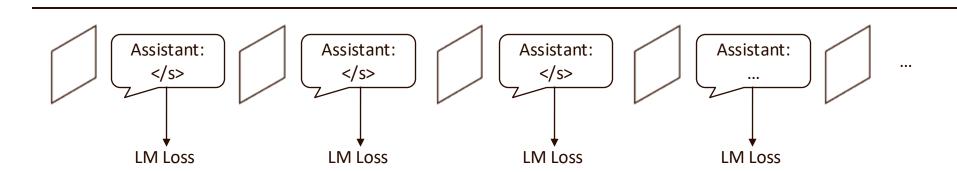
1. Interleaved Training



2. Streaming Training



Dense streaming frames cost too many unnecessary tokens from conversation template



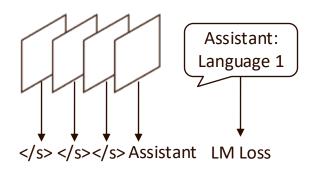
<|start_header_id|>assistant<|end_header_id|>\n\n<|eot_id|>

Time

5 extra tokens by Llama-3 Tokenizer for every frame

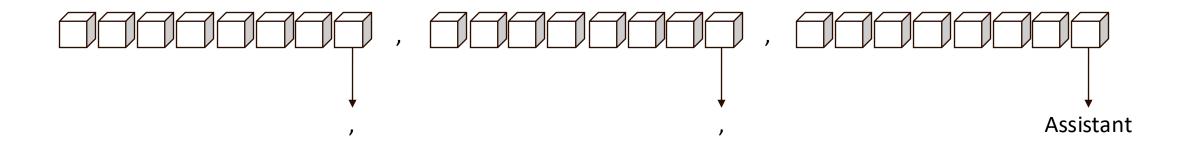
30 FPS, 1min -> 9000 extra tokens!

Directly learn EOS on each frame

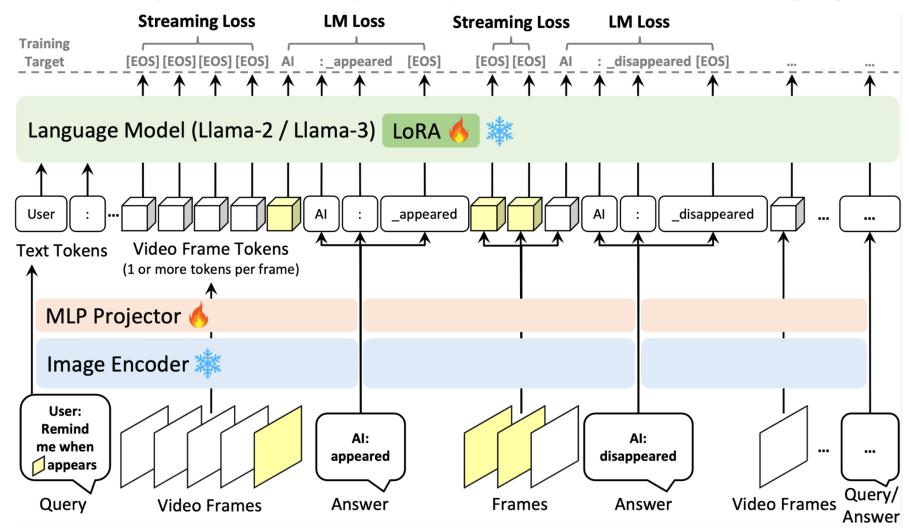


0 extra tokens!

Multiple vision tokens for a frame? We learn the interval token on the last vision token

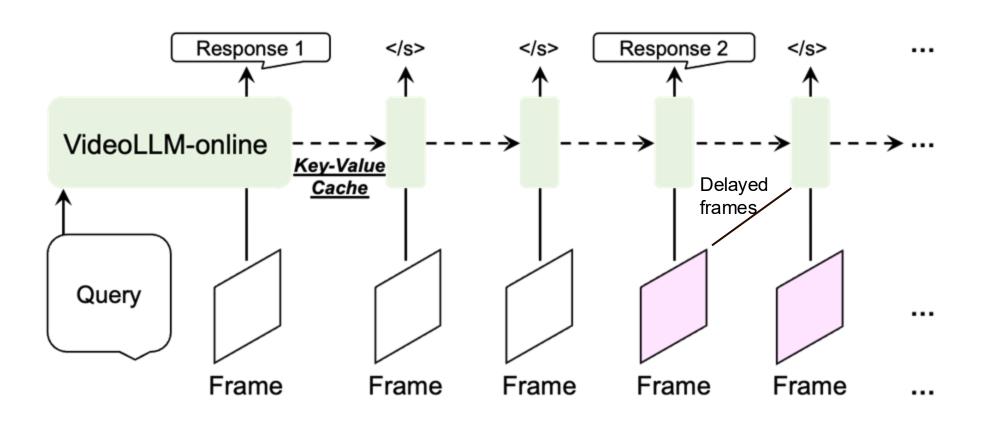


- \triangleright CLIP ViT \rightarrow CLS w. Pooled 3x3 Tokens per frame \rightarrow MLP (learn) \rightarrow LLM w. LoRA (learn)
- Organize a long sequences of interleaved visual-language tokens in temporal order
- > Streaming EOS (end-of-sequence) prediction loss + Standard language modeling loss



Inference pipeline

- 1. Adjust EOS threshold on streaming video frames
- 2. Continuous KV Cache during streaming inference
- 3. Parallelize the fast frame encoder and the slow language model
- 4. Common acceleration tricks, flash-attention, bf-16



Data Method

For data collected in a streaming way

Ego4D narration data collection can be regarded as a streaming dialogue by data annotators.

- 1. 5-minute video narration to interleaved dialogue;
- 2. Use Llama-3-8B-Instruct to refine narration, e.g. C does ... -> You are ...
- 3. Learning EOS on intermediate video frames.

A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.

<frame>

USER: You are my AR glass assistant in streaming mode. Help me to narrate my view.

ASSISTANT: You are looking at the rope on the floor. </s>

<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame

ASSISTANT: You tie the shoe lace on the floor.</s>

<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame>,<frame

ASSISTANT: You are looking around the room.</s>

•••

Data Method

For more common offline video dataset, we prompt LLM to generate streaming dialogue



- 1. Randomly insert templated or LLM generated questions into the video timeline
- 2. Prompting LLM to simulate responses at the timestamps in annotations

Data Method

For more common offline video dataset, we prompt LLM to generate streaming dialogue

Query Templates About Past About Now What have I done? What do you see now? What just happened? Describe my action now. Summarize my activities Current happened things. related to {goal}. 11 **About Next** To achieve {goal}, what are the next actions? Help me with {goal}. Can you instruct me what should be done in the next? Temporally Random II Insert **Video Streaming Dialogue** User: Random templated question Q1 Assistant: LLM Response to Q1 at time t1~t2 t1 t2 Assistant: LLM Response to Q1 at time t2~t3 Label Assistant: LLM Response to Q1 at time t3~t4 M t3 User: Random templated question Q2 t4 Assistant: LLM Response to Q2 at time t4"... Video Annotation Timeline

Generated Dialogue Example:

Annotation:

0.0s – 135.9s: Slice tomatoes into smaller pieces

136.7s – 149.4s: Add pepper to the sliced tomatoes

149.5s - 166.0s: Add salt to the sliced tomatoes

166.2s - 174.8s: Add sauce to the sliced tomatoes

175.0s - 212.4s: Mix ingredients.

212.4s - 228.1s: Clean hands...

(6.3s) User: What am I doing right now?

(6.3s) Assistant: You're currently slicing tomatoes into smaller pieces.

(135.9s) Assistant: You've finished slicing the tomatoes. What's next?

(136.7s) Assistant: Now, you're adding pepper to the sliced tomatoes.

(149.4s) Assistant: You've added pepper. Next, you should add salt to the sliced tomatoes.

(149.5s) User: Is the pepper important for the dish?

(149.5s) Assistant: Yes, pepper enhances the flavor of the dish. But now, let's focus on adding salt to the tomatoes.

(166.0s) Assistant: You've added salt. Now, it's time to add sauce to the sliced tomatoes.

(166.1s) User: What kind of sauce should I use?

(166.1s) Assistant: For this dish, a tomato-based sauce would work well. But feel free to experiment with other options if you prefer...

Define	metrics	for	strea	ıming
		. •	J.	

1. (Offline) LM-PPL: language modeling perplexity given context

2. (Online) TimeDiff: the time difference between expected response time and actual response time

3. (Online) Fluency: the token causal matching ratio with ground-truth tokens

Ego4D Streaming Narration

Method	Training Objective	Ego4D Nar <i>LM-PPL</i> ↓	Ego4D Narration Stream on Validation LM-PPL↓ TimeDiff↓ Fluency↑			Training Cost	
N	498.5	198.5 6.50 0.1% n/a		n/a	n/a		
Interleaved Dialogue	Language Modeling	2.45	6.47	11.1%	1694	12h	
Per-frame Dialogue for Streaming	Language Modeling (w/ EOS turns)	3.34	2.52	37.7 %	6737	22h	
Streaming Dialogue (Ours)	Language Modeling + Streaming EOS	2.43	2.32	42.6%	1694	12h	

⁽a) **Learning method for streaming dialogue**. Training with streaming dialogue method can achieve much better *TimeDiff* and *Fluency*, as well as maintain the language modeling quality. Meanwhile, the streaming dialogue can enjoy much more efficient training than per-frame dialogue for video streaming dialogue.

Ego4D Streaming Narration

Streaming Loss	Ego4D Na: <i>LM-PPL</i> ↓	rration Stream <i>TimeDiff</i> ↓	⁄alidation <i>Fluenc</i> y↑		
Standard CE	2.43	2.32	42.6%		
OHEM [71]	2.53	2.39	41.0%		
Focal Loss [49]	2.59	2.44	39.4%		

(b) Streaming loss function. Standard CE (cross-entropy) i
enough for training streaming dialogue; there is no need to
specifically to address the class imbalance on EOS token.

Weight $ au$	Ego4D Narration Stream Validation LM-PPL↓ TimeDiff↓ Fluency↑						
$\tau = 0.5$	2.44	2.32	42.4%				
$\tau = 1.0$	2.43	2.32	42.6%				
$\tau = 2.0$	2.46	2.31	42.5%				
$\tau = 3.0$	2.47	2.32	42.5%				

Method	Mem↓	FPS↑
Interleaved	34.4G	1.5
Per-frame Streaming	24.9G	7.5
Streaming	18.2G	13.5

is (c) Streaming loss weight. Using slightly higher stream- (d) Generation memory/speed. to ing loss weight ($\tau=2.0$) achieves the best trade-off Streaming dialogue method has among various metrics.

Downstreaming Fine-tuning

Method	Not use HT100M	CO Step	IN Bencl Task	hmark To Next	p-1 Accu Proc.	racy† Proc.+	Method	Not use EgoVLP	End-to -end?	Ego4D Verb	LTA ED (Noun	@Z=20↓ Action
ClipBERT [42]		30.8	65.4	-	-		CLIP [18]	✓	✓	0.739	0.769	0.941
TimeSformer [8]	X	46.5	85.3	34.0	17.0	40.1	EgoT2 [83]	✓	\checkmark	0.722	0.764	0.935
Paprika [98]	X	51.0	85.8	43.2	-	-	I-CVAE [56]	✓	✓	0.753	0.749	0.931
DistantSup [50]	X	54.1	90.0	39.4	-	41.3	HierVL [5]	✓	\checkmark	0.724	0.735	0.928
VideoTF [61]	X	56.5	91.0	42.4	40.2	46.4	VideoLLM [11]	X	\checkmark	0.721	0.725	0.921
ProcedureVRL [97]	X	56.9	90.8	46.8	-	-	VideoLLM-online-7B-v1	✓	\checkmark	0.697	0.698	0.897
VideoTaskGraph [6]	X	57.2	90.5	40.2	-	-	VideoLLM-online-8B-v1+	✓	\checkmark	0.689	0.671	0.884
VideoLLM-online-7B-v1	✓	59.8	92.1	48.1	47.9	52.9	Palm [34]	x	X	0.696	0.651	0.886
VideoLLM-online-8B-v1+	✓	63.1	92.7	49.1	49.8	54.1	AntGPT [94]	X	X	0.650	0.650	0.877

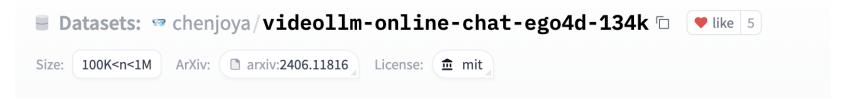
⁽a) Results on COIN benchmarks (left to right): step recognition, task recognition, (b) Results on Ego4D LTA benchmark, evaluated on public server. next forecasting, procedure forecasting, procedure forecasting with a goal.

ED@Z=20 denotes editing distance for future 20 actions.

Online Temporal Alignment

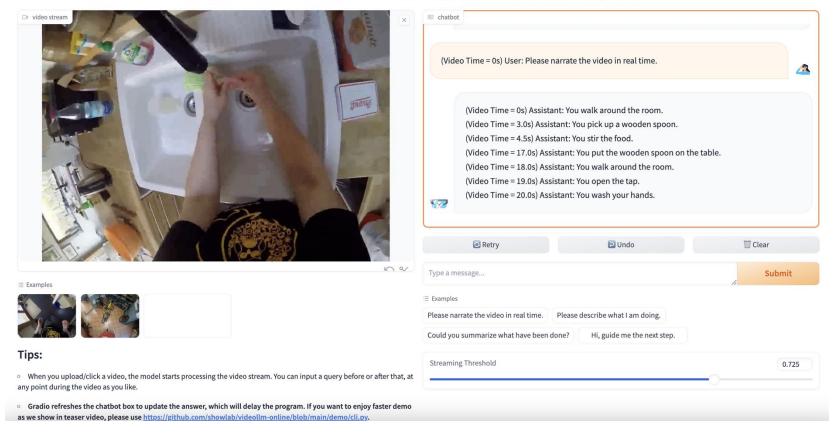
Open source

Demo model used data: Ego4D 113k streaming narration and 21k (generated) streaming dialogue



Gradio Demo (CLI is faster, 5~10 FPS for RTX 3090, 10~15 FPS for A100 GPU)

VideoLLM-online: Online Video Large Language Model for Streaming Video



VideoLLM-online: Online Video Large Language Model for Streaming Video

Paper, Code, Demo, Data

https://showlab.github.io/videollm-online/

感谢聆听!Q&A